Paint & Ink Driers

PORTFOLIO FOR PAINTS & COATINGS

2021 Global

1 🔶 troycorp.com

Troy Preservatives Accommodate the Evolving Needs of Customers Worldwide

Troy driers and metal carboxylate products enable manufacturers to create value added, high performance coatings, including architectural, decorative, OEM/industrial, traffic, and gel coat, as well as inks, lubricants, and many other industrial and consumer materials. Troy offers a full portfolio of paint driers, which are shown on page 11.

Over periods of prolonged paint storage, however, paint driers become deactivated — a condition known as loss-of-dry. The best defense is to incorporate a loss-of-dry inhibitor. In reponse to this challenge, Troy developed Troymax[™] Permadry, a highperformance loss-of-dry inhibitor. By incorporating Troymax Permadry into formulations, drying times can be maintained for significantly longer periods, extending product shelf-life and protecting the paint's commercial value.

Consumers and manufacturers are affected by the skinning of liquid products such as paints, stains, inks, and other coatings. Skinning is a premature, unwanted, film-formation on liquid or slurried product surfaces. The risk of skinning can be reduced with the addition of Troymax Antiskin agents. Troy's line of Troymax Antiskin products is shown on page 11.

Access Additional Driers Literature at troycorp.com

For more information, comprehensive brochures are available, detailing Troy's complete lines of Driers and Antiskinning Agents, as well as unique Troymax Permadry. To view and download these full product brochures, as well as product PDSs and SDSs, visit troycorp.com.

TROY The Gold Standard for Performance Advanced Driers

Element	Symbol	Typical use level % metal per resin solids	Description					
Barium	Ва	0.20	Barium carboxylates improve through-drying of a coating and have good pigment wetting characteristics. They also demonstrate lower water sensitivity than Calcium carboxylates.					
Bismuth	Bi	0.20	Bismuth is used as a substitute for lead. It strongly activates cobalt and improves through- drying properties and drying under adverse weather conditions (like Calcium does). Bismuth carboxylates are used in baking finishes to improve the hardness.					
Calcium	Ca	0.20	Calcium carboxylates, by themselves, have minimal effectiveness as driers but are very useful when used in combination with active driers such as Cobalt and Manganese. Calcium driers help to improve hardness and gloss as well as to reduce skin-formation, silking, and blooming. They are also useful as pigment wetting/dispersing agents and loss-of-dry inhibitors. Calcium carboxylates are not recommended for coatings subjected to drying under adverse conditions.					
Cobalt	Co	0.04	Cobalt carboxylates are the most effective oxidative catalysts at ambient temperatures. Cobalt driers produce fast surface dry to the film. They also are effective as accelerators for peroxide-initiated polyesters and epoxies.					
Copper	Cu	0.15	Copper carboxylates possess some catalytic activity and tend to produce more consistent films.					
Iron	Fe	0.06	Effective drying catalyst for baking finishes.					
Lithium	Li	0.08	Lithium carboxylates promote through-drying. They are often used in High Solids coatings and water-dispersible alkyds. They do not lose their effectiveness even in cool environments.					
Manganese	Mn	0.04	Manganese carboxylates improve the surface drying of a paint film and also possess some through-drying properties. They are frequently used as polymerization accelerators in baking finishes and low-temperature drying systems.					
Potassium	К	0.10	Potassium carboxylates work synergistically with Cobalt in thermo-set systems.					
Strontium	Sr	0.20	Strontium carboxylates improve through-drying under adverse conditions, such as high humidity and low temperatures.					
Zinc	Zn	0.15	Zinc carboxylates demonstrate anti-oxidantproperties Zinc carboxylates keep auto-oxidative films "open," thus permitting hardening throughout. Zinc carboxylates are very effective wetting/pigment-dispersing agents.					
Zirconium	Zr	0.20	Zirconium carboxylates improve the through-dry of auto-oxidative drying systems. They are used in combination with Cobalt and Calcium carboxylates. They are preferentially used as replacements for Lead.					

Introduction

Troy driers and metal carboxylate products enable manufacturers to create value added, high performance coatings, including architectural, decorative, OEM/industrial, traffic, and gel coat, as well as inks, lubricants, and many other industrial and consumer materials. Troy offers a full portfolio of paint driers, which are shown on page 11.

Over periods of prolonged paint storage, however, paint driers become deactivated — a condition known as loss-of-dry. The best defense is to incorporate a loss-of-dry inhibitor. In reponse to this challenge, Troy developed Troymax[™] Permadry, a high-performance loss-of-dry inhibitor. By incorporating Troymax Permadry into formulations, drying times can be maintained for significantly longer periods, extending product shelf-life and protecting the paint's commercial value.

Over periods of prolonged paint storage, however, paint driers become deactivated — a condition known as loss-of-dry. The best defense is to incorporate a loss-of-dry inhibitor. In reponse

Periodic Table of the Elements

1 IA 1																18 VIIIA 2 He
Hydrogen 1085 I Li Littium Littium											13 IIIA 5 Boron 10.81	14 IVA 6 Carbon 12011	15 VA 7 N Nitrogen 14.007	16 VIA 8 0 0xygen 15,999	17 VIIA 9 Fluorine 18.998	Helium 4.0026 2 10 Neon 20,180
21 11 Na Sodium 22.9895922 Magnesium 24.005	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	13 Aluminium 26.982 2-8-3	12011 2-4 14 Silicon 28.085 2-8-4	14,007 2-5 15 Phosphorus 30,974 2-3-5	15.999 2-6 16 Sulfur 32.06 2-8-6	18.5998 2-3 17 Cll Chlorine 35.45 2-8-3	220.180 2-8 18 Argon 39.948 2-8-8
19 R Potassium 35,0783 2-4-1 38	21 Sc 44.955908 2-8-9-2	22 Tii Ttanlum 47,867 2-8-10-2	23 V Vanadlum 50.9415 2-8-11-2	24 Cr Chromlum 51,9961 2-8-13-1	25 Mn Manganese 54,938044 2-8-13-2	26 Fe Iron 55.845 2-8.11-2	27 Co Cobalt 58,933 7-8-5-2	28 Nickel 58,693 2-8-10-2	29 Cu copper 63:546 2-3-18-1	30 Zn Zinc 65.38 2-8-11-2	31 Gallum 69,723 2-8-18-3	32 Ge Germanium 72,630 24-86-4	33 Ass Arsenic 74,922 2-8-8-5	34 See Selentum 78.971 2-8-8-6	35 Br Bromine 79,904 24-84-7	36 Krypton 83,798 2-8-8-8
37 Rb <u>Rbidium</u> <u>85.4578</u> <u>55</u> 38 Sr <u>Strontium</u> <u>07.62</u> <u>24912-92</u> <u>56</u>	39 Y Yttrium 88,90584 2-8-18-9-2	Zr ^{Zirconium} 91.224 2-0-10-11-2 72	41 Nbb Niobium 92,90637 2-8-18-12-1 73	42 Mo Molybdenum 95.95 2-8-13-13-1 74	43 Tc Technetium (98) 2-8-18-13-2 75	44 Ru Ruthenium 10107 2-8-18-15-1 76	45 Rh Rhodium 102.91 2-8-18-10-1 77	46 Pd Palladium 106.42 2-8-18-18 78	47 Ag Silver 107.87 2-8-18-18-1 79	48 Cd Cadmium 112,41 2-6-18-19-2 80	49 Indium 114.82 2-8-18-18-3 81	50 Sn 118,71 245-18-44 82	51 Sb Antimony 121.76 248-18-18-5 83	52 Te Tellurium 127.60 2-8-18-18-6 84	53 lodine 126,90 2-8-18-18-1	54 Xeon 131,29 2-8-0-8-8-8 86
Cs Barlum 122/054596 -24-11-124-2 87 88	57-71 Lanthanides	Hf Hafnium 178.49 2-8-10-21-2 104	Ta Tantalum 180.94788 2-8-32-11-2 105	W Tungsten 183.84 2-8-19-12-2 106	Re Rhenium 186.21 2-8-18-32-32 107	Osmium 190.23 2-8-18-32-11-2 108	lridium 192.22 2-8-18-32-75-2 109	Ptatinum 195.08 2-8-18-32-77-1 110	Gold 196,97 2-8-18-32-18-1 111	Hg Mercury 200.59 2-8-18-32-18-2 112	Thallium 204,38 2-8-18-32-18-3 113	Pb Lead 207.2 2-8-76-72-18-4	Bismuth 208,98 2-8-13-12-18-5 115	Polonium (209) 2-8-18-32-18-6 116	At Astatine (210) 2-8-78-72-78-7 117	Rn Radon (222) 2-8-13-132-18-8 118
Francium (223) 24-14-01-16-14	89–103 Actinides	Rf Rutherfordium (267) 2-8-10-32-32-10-2	Dubnium (268) 2-8-18-32-32-11-2	Sg Seaborgium (269) 2-8-18-12-32-12-2	Bohrium (270) 2-8-38-37-32-48-2	Hs Hassium (277) 2-8-18-32-52-18-2	Mt Meitnerium (278) 2-8-10-32-15-2	Ds Darmstadtium (281) 2-8-18-32-32-17-1	Rg Roentgenium (282) 2-8-18-32-17-2	Copernicium (285) 2-8-18-52-52-18-2	Nh Nihonium (286) 2-8-18-32-32-38-3	Flerovium (289) 2-8-18-32-32-18-4	Mc (290) 2-8-18-32-12-18-5	Lv Livermorium (293) 2-8-8-52-32-18-6	Ts Tennessine (294) 2-8-18-32-32-18-7	Oganesson (294) 2-8-18-20-27-18-8
	57 La Lanthanum 138.91 24-19-13-24-2 89	58 Ce Cerium 140.12 2-8-16-19-9-2 90	59 Praseodymium 140.91 2-5-32-21-3-2 91	60 Nd Neodymium 144.24 2-8-19-70-8-2 92	61 Promethium (145) 2-3-18-22-8-2 93	62 Sm 560.36 2-8-18-20-18-2 94	63 Europium 151.96 2-3-18-25-38-2 95	64 Gd Gadolinium 157.25 24-31-75-4-7 96	65 Tb Terbium 158.93 241-8-77-8-2 97	66 Dy Dysprosium 162.50 2-6-13-78-6-7 98	67 Ho Hotmiun 164.93 2414/570-52 99	68 Erbium 167.26 2-6-16-11-6-2 100	69 Tm Thulium 168.93 2-8-18-11-8-7 101	70 Yb Ytterbium 173.05 2-9-13-17-8-7 102	71 Lu Lutetium 174.97 24-19-01-92	
	Actinium (227) 2-8-18-12-18-9-2	Thorium 232.04 2-8-18-32-18-10-2	Protactinium 231.04 2-8-78-32-20-8-2	Uranium 238.03 2-8-18-32-21-8-2	Np Neptunium (237) 2-8-78-32-72-8-2	Plutonium (244) 2-8-18-32-24-8-2	Americium (243) 2-8-78-32-25-8-2	Curium (247) 2-8-18-32-25-9-2	Bk Berkelium (247) 2-8-78-32-27-8-2	Californium (251) 2-8-18-32-29-8-2	Einsteinium (252) 2-8-18-33-29-8-2	Fermium (257) 2-8-18-32-30-8-2	Md Mendelevium (258) 2-8-18-32-31-8-2	Nobelium (259) 2-8-16-32-32-8-2	Lawrencium (266) 2-8-39-37-32-8-3	

Driers & Anti-Skinning Agents

	Product	Description					
Driers							
Troymax [®] Bismuth	24	Carboxylates from Synthetic Acids					
Troymax [®] Calcium	10NA, 8NA, 6NA, 5NA, 4NA	Carboxylates from Synthetic Acids					
Troymax [®] Calcium Octoate	6, 5	Carboxylates from Synthetic Acids					
Troymax [®] Cobalt	6, 8, 10 NEO, 10, 12 NEO, 6 D60, 10 D60, 12 D20, 12	Carboxylates from Synthetic Acids					
Troymax [®] Lithium	2	Carboxylates from Synthetic Acids					
Troymax [®] Manganese	12, 10, 9, 6	Carboxylates from Synthetic Acids					
Troymax [®] Potassium	15	Carboxylates from Synthetic Acids					
Troymax [®] Strontium	10	Carboxylates from Synthetic Acids					
Troymax [®] Zinc	22,18, 16, 16 NEO, 12, 10, 8	Carboxylates from Synthetic Acids					
Troymax [®] Zirconium	24, 18, 12, 10, 6	Carboxylates from Synthetic Acids					
Troychem [®] Copper	8	Naphthenates					
Troychem [®] Zinc	8	Naphthenates					
Troymax [®] Permadry		Loss of Dry Inhibitor & Water Dispersible					
Troymax [®] Cobalt	21	Loss of Dry Inhibitor					
Troychem [®] Calcium	6WD	Water Dispersible					
Troychem [®] Cobalt	6WD	Water Dispersible					
Troychem [®] Manganese	6WD	Water Dispersible					
Troychem [®] Zirconium	12WD	Water Dispersible					
Troymax®	KC10	Water Dispersible					
Troymax [®] Lithium	2	Water Dispersible					
Troymax®	350	Organic Drier Accelerator					
Troymax®	CZ69,CSD, 123, 2002, KC10	Standard Drier Blends					
Troymax®	ВХРВ	Lead Replacement					
	Oxime-Based Anti-Skinning A	gents					
Troymax [®] Antiskin OS	Oxime-Based Anti-Skinning Agents						
Troymax [®] Antiskin OP	Oxime-Based A	nti-Skinning Agents					
Troymax [®] Antiskin OL	Troymax [®] Antiskin OL Non-Oxime Anti-Skinning Agent						
Troymax [®] Antiskin B Oxime-Based Anti-Skinning Agents							
Troymax [®] Antiskin MP Oxime-Based Anti-Skinning Agents							

Custom made Drier Blends can also be provided.

Vehicle or Type	Cobalt	Manganese	Zirconium	Calcium
ALKYDS	Expressed as % me	tal on vehicle solids		
	.0306	-	0.1 - 0.3	-
ong Oil Soya	.0306	-	0.1 - 0.2	0.1 - 0.2
	.0306	-	-	0.1 - 0.3
	.0204	-	0.05 - 0.1	0.05 - 0.1
ledium Oil Soya	.0204	-	0.1 - 0.2	-
	.0103	-	0.05 - 0.1	-
hort Oil Soya	.0103	-	-	0.05 - 0.1
	.0103	-	0.0501	0.05 - 0.1
	.0305	-	0.1 - 0.3	-
ong Oil Linseed	.0305	-	-	0.1 - 0.3
	.0305	-	0.1 - 0.2	0.1 - 0.2
Medium Oil Linseed	.0204	-	0.1 - 0.2	-
	.0204	-	-	0.1 - 0.2
Long Oil (Others)	.0306	-	0.1 - 0.3	0.1 - 0.3
	.0306	-	-	-
	.0103	-	0.1 - 0.2	0.1 - 0.2
short Oil (Castor)	.0103	-	-	-
Short Oil	.0103	-	0.1 - 0.2	-
Tall)	.0103	-	-	0.1 - 0.2
OILS				
inseed	-	.0203	0.1 - 0.2	0.1 - 0.2
law	.0203	-	0.1 - 0.2	0.1 - 0.2
loiled	.0102	.0102	0.1 - 0.3	-
Ikali Refined	-	.0203	0.1 - 0.2	-
leat Bodied	.0203	-	0.1 - 0.3	-
oybean Raw	0.1 - 0.2	0.102	0.1 - 0.3	-
leat Bodied	.051	.05 - 0.1	0.1 - 0.3	-

To incorporate 0.04% Cobalt metal on resin solids: 22.5 kg x 0.04% = 0.009 kg of Cobalt metal is required.

This is provided by $0.009 \times 100 = 0.075$ kg of Troymax Cobalt 12

12

Services

As a Performance Partner, Troy offers a variety of services to support our product line of preservatives and additives to meet customer needs and provide market solutions.

Troy invites you to take advantage of the Troy services that can help you achieve your market objectives.

- Technical Service representatives can provide formulation assitance, product evaluation, and microbiological, analytical, and field testing to assist you in developing an optimum formulation that meets your product objective.
- Regulatory support is offered globally with regional and national expertise to meet your needs.
- R&D scientists work to anticipate future industry needs and develop innovative technology. Contact your Troy representative to discuss your unique requirement that may not be met by materials currently on the market. In fact, Troy may have just what you need already under development and if not, may be able to work with you to achieve your objective.
- A global supply network is in place to ensure product availability and fast delivery. Contact your local representative to ensure the product you need is available when you need it.

Contact your nearest Troy representative for immediate assistance or visit us online at www.troycorp.com. When visiting the website, become a registered user to obtain access to a wide range of resources.

Global Headquarters

Troy Corporation

8 Vreeland Road | Florham Park, NJ USA 07932 Phone: +1-973-443-4200 | Email: info@troycorp.com

The Gold Standard for Performance

The Americas

info.canada@troycorp.com info.brasil@troycorp.com info.latam@troycorp.com

Europe

info.benelux@troycorp.com info.dachs@troycorp.com info.europe@troycorp.com info.italy@troycorp.com info.iberica@troycorp.com info.russia@troycorp.com info.uk@troycorp.com

Asia Pacific

info.asia@troycorp.com info.china@troycorp.com info.india@troycorp.com info.japan@troycorp.com info.anz@troycorp.com

troycorp.com

An ISO 9001:2015 and ISO 14001:2015 Certified Company

The information included in this brochure is subject to change without notice and is provided for informational purposes only. No contractual rights are established or should be inferred because of user's reliance on the information contained herein. To the extent allowed by law, Troy makes no warranty, and hereby disclaims all warranties of any kind, either express or implied by fact or law, including warranties of fitness for a particular purpose or merchantability, with respect to such information. Troy shall in no event be liable for any special, incidental, consequential or other indirect damages, notwithstanding that Troy may have been advised or is aware of the possibility of such damages or if such possibility was reasonably foreseeable.